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ABSTRACT 

While the scientific output of research infrastructures is well documented, the broader effects of their secondary outputs, such as 

computational resources and datasets, remain poorly understood. To better understand the benefits of these public resources, this study 

explores the AlphaFold (AFDB) database, a collaboration between DeepMind and the European Molecular Biology Laboratory 

(EMBL) that democratizes access to protein structure data. Employing a quantitative case study strategy using bibliometric analysis, 

this study compares publications indexed in the Web of Science Core Collection citing the original AF paper (Jumper et al., 2021) 

(n=13,049) with those citing the AlphaFold database (Varadi et al., 2022) (n=659), covering publications up to August 2024. We 

examine the impact of the EMBL AlphaFold database on research themes, collaboration patterns, and scientific impact. Our 

exploratory analysis identifies several impacts: studies leveraging the AF database investigate application-focused themes and require 

collaboration between fewer institutions. This research highlights the wide-ranging impacts of research infrastructures, emphasizing 

the need for comprehensive impact assessments to inform future research policy and funding decisions. 
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INTRODUCTION  

Research Infrastructures (RIs) are essential pillars of 

modern science, facilitating the discovery of 

breakthroughs and innovations (Reed, et al., 2021; Scarrà 

& Piccaluga, 2022; Florio & Sirtori, 2016). 

Traditionally, their success has been measured by 

publications and patents; however, in an increasingly 

data-driven research landscape, this narrow view often 

overlooks the significant ripple effects from their 

secondary outputs including datasets, software, 

computational resources and tools (Wareham et al., 

2022; D’ippolito & Rüling, 2019, Pujol Priego and 

Wareham, 2023). These investments represent 

significant public expenditure, exemplified by recent 

European funding calls allocating figures such as €221.5 

million for new RI projects (European Research 

Executive Agency, 2023). As neglecting these secondary 

outputs can lead to an incomplete picture of an RI’s 

value, it is then crucial to take them into account to 

holistically assess the return on investment in RIs and to 

guide future science policy. 

The recent development of AlphaFold (AF), an 

artificial intelligence system for protein structure 

prediction, provides a unique opportunity to explore the 

impact of research infrastructure outputs (Jumper et al., 

2021). Created by DeepMind, AlphaFold has been hailed 

as one of the most important breakthroughs in biology, 

but the computational resource requirements initially 

limited its widespread use. To address this constraint, a 

collaboration between DeepMind and the European 

Molecular Biology Laboratory (EMBL) led to the 

creation of the AlphaFold database (AFDB), a shared 

scientific data infrastructure for the millions of protein 

structures predicted by AlphaFold (Varadi et al., 2022). 

This distinction between the algorithmic 

breakthrough (AF) and the readily accessible database 

(AFDB) provides a valuable quasi-experimental setting. 

While AF represents the fundamental breakthrough, 

AFDB is the secondary output by an RI designed to 

democratize access to the results of that development. 

The database adds significant value by making these 

predictions readily accessible to researchers without the 

need for extensive computational resources and 

expertise. Investigating the downstream scientific 

outcomes citing AFDB, in comparison to those citing the 

original AF paper, allows us to explore further the 

specific impact of such open data infrastructures. 

Understanding the differential impact of the AFDB is 

critical for RI policy and funding. Does making complex 

data readily accessible truly foster wider use? Does it 

enable different research themes? Does it stimulate 

impactful, downstream research? Without such studies, 

the full value of these resources may not be adequately 

accounted for in policy decisions, potentially hindering 

wider investments in similar infrastructures. In summary, 

we seek to answer the following research question: How 

mailto:angelokenneth.romasanta@esade.edu


The Impact of Research Data Infrastructures: The Case of the AlphaFold Database 

 

43 

does the AlphaFold database impact downstream 

scientific activity – specifically research themes, 

collaboration patterns and scientific impact – compared 

to the original algorithmic breakthrough? We conduct a 

quantitative bibliometric analysis using data from Web 

of Science. This research serves as an important 

foundation for the COMPUTE IMPACT project funded 

by ATTRACT, which aims to holistically evaluate the 

impact of computational tools and datasets generated by 

research infrastructures.  

THEORETICAL BACKGROUND 

Impact assessment of RIs has traditionally been 

focused on primary scientific outputs such as 

publications and patents (Heidler, & Hallonsten, 2015; 

Mayernik et al., 2021). However, this focus fails to 

capture the full spectrum of their contributions (Florio & 

Sirtori, 2016; Autio et al., 2004), particularly the 

increasingly important role played by secondary outputs 

including curated datasets and computational tools (e.g. 

Beagrie & Houghton, 2021). In an era increasingly 

defined by big data and increasing calls for Open Science 

(Vicente-Saez & Martinez-Fuentes, 2018), a more 

comprehensive understanding of the diverse ways RI 

investments spread beyond their immediate scientific 

purview is paramount for scientific policy. 

The Open Innovation in Science framework (Beck et 

al., 2021, 2022) offers a useful lens for understanding 

these broader impacts. OIS refers to the process of 

managing knowledge flows across boundaries 

throughout the entire scientific research process, from 

conceptualization to dissemination and adoption by 

industry (Beck et al., 2020). Within this framework, open 

RI outputs like AFDB can be conceptualized as a 

“shared scientific infrastructure”, facilitating 

knowledge sharing between developers of scientific 

breakthroughs (e.g. DeepMind) and downstream users 

across various scientific and industrial domains. By 

lowering barriers to access and use, it is expected that 

these infrastructures democratize participation in science 

and accelerate knowledge diffusion. 

Drawing on the OIS framework, we can theorize 

various potential impacts of AFDB in lowering barriers 

to entry and democratizing access to scientific resources. 

However, the specific effects of such open data 

infrastructures are not predetermined and can be 

multifaceted. 

First, by providing readily usable data, such research 

infrastructure might reduce the time, resources and 

expertise needed for certain research phases (Romasanta 

et al., 2022; Fabre et al., 2021). As theorized by OIS, 

such accessible infrastructures can facilitate knowledge 

flows into new application domains. This 

democratization of science could allow a wider range of 

topics to be explored more easily and shift research 

towards downstream applications. Alternatively, the 

primary effect might be simply enabling more research 

within established thematic areas, effectively amortizing 

the costs fundamental research across a broader base 

(Pujol Priego and Wareham 2024). In this scenario, the 

distribution of research themes might not differ 

significantly with AFDB primarily acting as an 

accelerator for existing research lines. 

Second, open resources can enable researchers from 

resource-limited institutions to contribute meaningfully 

to scientific discourse (Pujol Priego et al., 2022). We can 

then theorize that increased accessibility and reduced 

resource requirements may allow smaller teams and 

resource-limited institutions to contribute much more 

readily to scientific progress. Similarly, AFDB could 

function as a boundary object – a shared resource that 

facilitates interaction between diverse groups. Providing 

a common data foundation could lower the barriers to 

collaboration, potentially leading to papers involving 

more contributing groups (Olson, Zimmerman & Bos, 

2008). 

Third, open datasets and tools may contribute to 

increased scientific impact by enabling more researchers 

with unique perspectives to build upon existing work 

(Gold, 2021). Such open infrastructures may shape the 

pace of scientific discovery by reducing duplication of 

effort and allowing researchers to focus on novel aspects 

of their studies. In turn, we could speculate how this 

could lead to these papers having higher citations 

(Colavizza et al., 2024, Piwowar and Vision, 2013) 

Alternatively, the very openness of the database could 

dilute the perceived contribution of any single 

application paper. Work building on the pre-computed 

AFDB data might be perceived by the scientific 

community as less novel or transformative, leading to 

lower citations.  

This study uses bibliometric analysis to empirically 

investigate these competing possibilities. While the OIS 

framework provides a strong theoretical grounding, 

empirical evidence of the impact of research 

infrastructure datasets and tools remains limited 

Addressing this gap, this bibliometric study aims to 

provide early evidence of the impact of such RI 

secondary outputs on research themes, collaboration, and 

scientific impact, towards a more holistic view of RIs’ 

impacts.  

METHOD AND DATA 

This study employs a quantitative case study strategy 

using bibliometric methods to explore the understudied 

impacts of Ris’ secondary outputs in their real-world 

contexts. We selected the AFDB (Varadi et al., 2022) as 

the case due to its timeliness, relevance, and specific 

nature as a secondary RI output explicitly designed to 

democratize access to the original AF breakthrough 

(Jumper et al., 2021). This setup allows us to explore the 

distinct impacts of the database, particularly regarding 
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potential democratization effects, by comparing 

publications citing the database to those citing only the 

original algorithm. 

We collected bibliometric data from Web of Science 

Core Collection for all document types (articles, reviews, 

conference papers, etc.) citing both AF and AFDB 

indexed up to August 2024. The initial dataset comprised 

15,700 articles citing AF and 3,310 citing AFDB. To 

isolate the distinct effects of each, we further filtered 

these datasets to create two core groups: the AF studies 

contained 13,049 articles citing Jumper et al. (2021) but 

not Varadi et al. (2022). The AFDB papers contained 659 

articles citing Varadi et al. (2022) but not Jumper et al. 

(2021). A third group citing both papers was also 

identified but primarily used for supplementary context, 

not a direct comparison in the main analyses focused on 

distinct impacts.  

 

 

Fig. 1. Citing articles over time. 

To explore the differences in research themes 

between the two sets of papers, we first looked at the top 

journal sources for both. Moreover, to visualize these 

topics, we also generated a cooccurrence map of the top 

150 author keywords for each dataset using the software 

VosViewer (van Eck & Waltman, 2010). To dive deeper 

into their differences, we performed topic modelling with 

Latent Dirichlet Allocation (LDA) (Blei, Ng & Jordan, 

2003). The text corpus for each article consisted of its 

combined title, abstract, author and Web of Science-

assigned keywords. The text was then pre-processed by 

converting it to lowercase, removing standard English 

stopwords and tokenizing. We used the gensim library in 

Python to train the LDA model with 10 topics. We 

obtained the topic probability distribution for each 

document. We then used the non-parametric Mann-

Whitney U test to determine if the distributions of topic 

probabilities differed significantly between the AF-only 

and Database-only groups for each of the 10 topics. 

After comparing the distribution of research topics, 

we wanted to differentiate the collaboration patterns and 

scientific impact between these two sets. To mitigate 

potential confounding factors related to research fields 

and publication dates, we employed a matching 

procedure for better comparison. Given the substantial 

difference in the size of the AF-only (13,049) and 

AFDB-only (659) groups, this matching aimed to create 

comparable subsets. For each of the 659 articles citing 

only AFDB, we found a matching article from the AF-

only group with the same publication year and journal. 

When an exact journal match was not possible, we 

expanded the criteria to match based on the same year 

and Web of Science Category. This process resulted in a 

matched dataset of 659 pairs of articles. While we 

acknowledge that this matching approach, based on year 

and journal/WoS category is a simplification and does 

not control for all potential confounding variables (e.g., 

funding, author seniority), it provides a pragmatic first 

step to explore potential differences.  

Using the matched dataset of 659 pairs, we compared 

their collaboration patterns through co-authorship and 

scientific impact through citations. To get a sense of the 

top institutions for each set, using VosViewer, we 

generated the co-authorship map across institutions with 

at least 5 publications. To differentiate the extent of 

collaboration in each set, we compared the average 

number of co-authors and institutions between the AF 

database and AF-only groups using the non-parametric 

Mann-Whitney U test to assess statistical significance 

due to non-normal distributions typical in such data. 

Moreover, we compared the number of citations received 

by articles in both groups. Given the relatively short time 

since the publication of these papers, citation counts may 

not yet fully reflect their long-term impact. Additionally, 

in any set of papers, many papers typically will receive 

few or no citations. As such, we utilized a logarithmic 

scale to better visualize the distribution of citation 

counts. We applied the Mann-Whitney U test to compare 

the matched groups. We also performed a Fligner-

Killeen test to check for differences in the variance of 

citations between the two groups. 

Overall, this methodology provides an exploratory 

case study of AFDB’s distinct downstream impacts, 

laying the groundwork for future, more rigorous, 

investigations. 

RESULTS 

Research themes 

Comparing the top journals of papers citing AF and 

AFDB already reveals initial differences. The top journal 

sources for AF come from Nature Communications 

(676), International Journal of Molecular Sciences (350) 

and PNAS (243). In contrast, for AFDB, the top journals 

included Nucleic Acids Research (43), International 

Journal of Molecular Sciences (24) and Nature  

Communications (23). The top keywords for each set are 

shown in Figure 2. Visual examination of each network 

shows that the cluster on computational methods (green) 

for papers citing AF is larger compared to AFDB. 

To achieve a more nuanced understanding of 

thematic differences, we applied topic modelling to 

reveal 10 distinct topics across the full set of AF-only 
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papers and AFDB-only papers. Table 1 shows the top 

keywords for each topic and indicates whether there were 

statistical differences (Mann-Whitney U test, p <0.05) 

across the two groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
AlphaFold algorithm 

 

 
AlphaFold database 

Fig. 2. Top keywords from papers citing the AlphaFold 

algorithm and AlphaFold database paper. 

Table 1 shows that five topics showed significant 

differences in their prevalence between the two groups. 

AFDB papers were significantly more focused on Drug 

Discovery, Disease Mechanisms, and Macromolecular 

Complexes, suggesting a strong orientation toward 

applying the readily available structural data to specific 

biological problems. Conversely, AF papers had 

significantly higher probabilities associated with Protein 

Prediction and Machine Learning, reflecting a greater 

focus on the algorithmic, methodological, and 

computational aspects of protein structure prediction.  

 
Fig. 3. Differences in topic distributions. 

Table 1. Keyword analysis. 

Topic Top keywords Difference 

Drug Discovery Drug, molecular, binding, 

peptide, docking, target, 

inhibitors, discovery, receptor 

AFDB 

higher 

Enzymology Enzyme, activity, acid, 

substrate, biosynthesis, 
catalytic, engineering 

 

Genetics Variants, mutations, gene, 

variant, disease, genetic, 

associated, patients, missense 

 

Disease 
Mechanisms 

Cancer, cell, cells, virus, cov, 
human, immune, disease, 

expression, sars, vaccine 

AFDB 
higher 

Protein 

prediction 

Protein, structure, proteins, 

prediction, based, structures, 

structural, sequence, model 

AFDB 

lower 

Machine 

Learning  

Learning, data, machine, deep, 

models, design, neural, 

methods, artificial 

AFDB 

lower 

Genomics Gene, genes, genome, species, 

evolution, plant, expression, 
resistance, host 

 

Cell Signaling  Membrane, protein, proteins, 

cell, bacterial, binding, domain, 

transport, system 

 

Macromolecular 
Complexes  

Protein, dna, complex, domain, 
binding, proteins, rna, structure, 

structural, cryo 

AFDB 
higher 

Physiology Sperm, male, venom, sex, 

insulin, odorant, fertilization, 
egg, olfactory 

 

Collaboration Networks 

Figure 4 shows the collaboration among the 

organizations which published at least 5 papers in our 

matched set. 
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AlphaFold algorithm 

 
AlphaFold database 

Fig. 4. Co-authorship networks for papers citing the AlphaFold 

algorithm and the AlphaFold database. 

 
To examine the impact of AFDB on collaborations, 

we compared the average number of authors and 

organizations between papers citing AF and AFDB. The 

results reveal slight differences in team composition. 

Articles citing only the AF database had a slightly lower 

average number of authors (7.7) compared to the 

matched AF paper-only group (8.0), however, this 

difference was not statistically significant (Mann-

Whitney U test, p = 0.666). In contrast, the average 

number of organizations per paper was significantly 

lower for the database-only group (4.9 vs. 5.6 for paper-

only; Mann-Whitney U test, p = 0.032). This statistically 

significant difference suggests that research utilizing the 

pre-computed structures in the database tends to involve 

collaborations spanning fewer institutions. This finding 

might tentatively support the idea that the database 

reduces the need for multi-institutional consortia often 

required to pool diverse expertise or resources to run 

complex models like AF. 

Table 2. Collaborations. 

 Only AF 

database 

Both Only AF 

paper 

Average 

authors per 

paper 

7.7 8.1 8.0 

Average 

organizations 
per paper 

4.9 5.6 5.6 

Top citing 

organizations 

Masaryk 

University 

Brno: 45 

Univ. Calif. 

System: 56 

Chinese Acad. 

of Sci.: 79 

CNRS: 44 Harvard 
University: 46 

 CNRS: 62 

Harvard 

Univ.: 41 

Chinese Acad. 

Sci.: 43 

Univ. Calif. 

System: 58 

Univ. Texas 

System: 38 

Univ. of 

Toronto: 37 

Harvard 

Univ.: 38 
Univ. Calif. 

System: 30 

CNRS: 31 NIH USA: 30 

 

Further analysis of the unmatched datasets reveals 

interesting differences in the most prolific institutions. 

Masaryk University Brno led the number of publications 

for AFDB, while the typical research powerhouses such 

as the University of California System, Chinese 

Academy of Sciences, CNRS and Harvard University 

topped the articles referencing the original AF paper. 

This difference hints that the infrastructure might be 

particularly enabling for institutions beyond the top 

global research producers who might have more 

resources to run the original model. 

Scientific Impact 

We compared the citation counts of the AF and 

AFDB groups. As shown in Fig. 5, the median citations 

for the three datasets is 1. While the mean citation count 

was higher for the database-only group (7.0) compared 

to the paper-only group (4.5), this difference was not 

statistically significant (Mann-Whitney U test, p = 

0.697). While the means are similar, it could still be the 

case that they have different variations especially since it 

seemed like there were more outliers in AFDB with 

unusually high larger number of citations. Thus, we ran 

a subsequent analysis to compare the variance in their 

distributions. However, a test for heterogeneity of 

variances (Fligner-Killeen test statistic = 0.32, p-value = 

0.57) indicated no significant difference in the spread of 

citation counts between the two groups. These results 

suggest that, within this relatively short timeframe for 

citations to accumulate up to August 2024, studies 

leveraging AFDB did not lead to a measurable difference 

in citation impact compared to building directly on the 

original AF paper.  

 

 

Fig. 5. Distribution of citations. 

DISCUSSION AND CONCLUSIONS 

This study provides an exploratory assessment of the 

impact of AFDB, a significant secondary output from the 

research infrastructure EMBL, in comparison to the 

original AF breakthrough. Our findings, interpreted 

through the lens of the Open Innovation in Science (OIS) 
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framework (Beck et al., 2022), provide preliminary 

empirical evidence that accessible data infrastructures 

like AFDB can shape scientific trajectories differently 

than the foundational innovations they derive from. 

First, the statistically significant divergence in 

research themes provides support for the OIS principle 

that accessible infrastructures facilitate knowledge flows 

into new domains. We found that papers citing AFDB 

showed a stronger orientation towards downstream 

application areas like drug discovery and disease 

mechanisms. In contrast, the original AF paper 

maintained a stronger focus on machine learning and 

protein prediction. This aligns with the OIS view of 

accessible resources enabling knowledge to flow into 

new application domains and potentially accelerating the 

translation of foundational breakthroughs into 

downstream, practical use cases. 

Second, our findings on collaboration patterns offer 

partial alignment with the OIS concept of 

democratization through lowered barriers to entry. The 

statistically significant lower average number of 

participating organizations in papers citing only AFDB 

provides tentative support for the notion that such 

resources can enable contributions from a potentially 

wider or different institutional base, possibly reducing 

the need for large consortia with specialized 

computational resources or expertise. While the 

difference in author count was not significant, the 

reduction in institutional span suggests the database 

might lower coordination needs or dependency on 

specific institutional capabilities required to run the 

original model. The differing profiles of top publishing 

institutions between the groups further hint at this 

potential broadening of access. 

Third, the lack of a significant difference in citation 

impact between the matched groups presents a nuanced 

finding. While OIS suggests open resources might 

accelerate discovery and impact, this may not 

immediately translate into higher citation counts. This 

suggests several possibilities. First, citation impact takes 

longer to accrue, especially for application-focused work 

and thus, would need longer-term monitoring. Second, 

the perceived novelty of these studies using pre-

computed data might be reduced. Third, the focus on 

citations might not be granular enough to fully 

characterize differences in scientific impact.  

Thus, while many of our findings look promising, it 

is crucial to acknowledge the limitations of this study. 

First, as a primarily exploratory study, the observed 

differences may be influenced by confounding factors 

not accounted for in our simple matching procedure; 

future work could employ methods like propensity score 

matching (PSM). Second, the relatively short time frame 

may not fully capture its long-term impact on the 

research landscape. To build upon these initial findings, 

longitudinal analyses tracking these cohorts over several 

more years could provide insights into how the impact of 

the AF database evolves over time. Third, bibliometric 

data such as citation counts only capture a small 

dimension of the scientific enterprise. They do not fully 

encompass knowledge translation, societal impact, or 

changes in research practices. Qualitative research, such 

as interviews with researchers using the database, could 

offer deeper insights into how it influences research 

practices and collaborations.  

Despite these limitations, this study offers 

preliminary theoretical and practical contributions. First, 

this study provides initial insights on the ripple impact of 

large-scale, open-access resources (like AFDB) that 

reach beyond the initial scientific breakthrough. Other 

researchers could build upon our findings on OIS in the 

case of scientific infrastructures to better understand how 

such outputs impact downstream science. Second, for 

research infrastructure funders, our results underscore 

the significant downstream value generated by secondary 

RI outputs like open-access databases. Our findings 

suggest that AFDB is not just facilitating more research, 

but potentially different kinds of research with broader 

institutional involvement. Evaluations of RI impact 

should develop methodologies to capture the value of 

activities such as data sharing, tool provision, knowledge 

democratization, and patents. Third, experimental 

researchers now have access to a broad range of public 

research databanks with numerous opportunities to 

enrich and accelerate their workflows (Pujol Priego & 

Wareham 2024).  

In conclusion, while acknowledging the exploratory 

nature of our analysis, this research provides initial 

evidence suggesting that the EMBL AlphaFold Database 

has distinct impacts on the scientific landscape compared 

to the original AlphaFold algorithm. While more 

sophisticated methods and longer timeframes are needed 

for future research, these initial findings indicate the need 

for a more holistic assessment of research infrastructure 

impacts. Correctly recognizing these broader impacts is 

essential for enabling the increasingly data-driven and 

open scientific landscape. 
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